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I ntroduction

Proper sample conditioning is essential to providing a
representative sample of natural gas to the analyzer.
Sample conditioning consists of extracting a sample from
a process stream, transporting it to an anayzer, and
conditioning it so that it is compatible with the analyzer.
Conditioning generally consists of controlling the gas
temperature, pressure, and flow rate. It also includes the
removal of contaminates which may ater the sample
composition and/or damage the analyzer. It is imperative
that the gas sample composition is not altered or distorted
during the conditioning process.

Equations of State (EOS) software programs are useful
tools for modeling the behavior of natural gas as it flows
through a sample system. With the use of an EOS
program one can determine if conditions in a particular
sample conditioning system are conducive to the proper
sampling of a specific natural gas composition.

EOS software can be useful to the engineer or technician
during the design, operation, and maintenance of a natural
gas sampling system. This paper will discuss the types of
information an EOS program can provide and how this
can be utilized to solve common sample conditioning
problems.

Equations of State (EQS) software

The EOS expresses the mathematical relationships which
exist between the pressure, volume, and temperature of a
fluid which permit the prediction of real behavior. There
are severa eguations of state utilized by the natural gas
industry. Two common ones are Peng — Robinson and
Soave — Redlich — Kwong (SRK).

The typical EOS software package utilizes these
equations to provide a vast amount of information for a
given gas composition.

The following are examples of information which they
can provide that is valuable to the analyzer engineer or
technician.

e The hydrocarbon dew point temperature
e A phasediagram
e Physical properties of acomplex gas mixture

e The composition, heating value (BTU content),
and physical properties of both phases of a gas
and liquid which are in equilibrium

e The heating value of a gas sample stream

The above information is required to answer practical
guestions such as:

o Isliquid entrained in the sample source?

e What is the dewpoint temperature of the
sample gas at source pressure?

e Will condensation occur in the sample
system?

Using a typical EOS softwar e package

Entering the composition

The first step is to enter a gas composition (Figure 1).
Components are selected from a library consisting of
hundreds of components. A favorite alternate isto select a
template containing only the components normally found
in natural gas. The molar ratio (percentage) of each
component is entered. This information is obtained from
historical data, previous anaysis, or current analysis
depending upon the task at hand.
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Figure 1 - Typical EOS softwar e program component library. Selected components and their molar ratio for a
specific gas mixture are shown on theright in thisfigure.

Selecting the type of flash calculation The second step isto select the type of “Flash”
(calculation) to be utilized (Figure 2).
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Figure2 - A flow chart showing a gas stream’s“inlet conditions” (initial process condition), four types of typical
“flash calculations’, and the flash conditions (stream conditions after calculations ar e performed).



The typical types of flash calculations are listed in Figure
3 with a brief description of each. The autarchic condition
was selected for this example.

Autarchic

Autarchic means independent. The two conditions
selected for the flash condition or second set of
conditions can be chosen independent of the two
conditions selected for the “inlet condition”.

Isothermal

This means that the temperature for the flash condition is
the same as the temperatures selected for the “inlet

condition”.

Isobaric It means that the pressure for the flash condition is the

same as the pressure selected for the “inlet condition”.

Adiabatic

enthalpy equals the inlet enthalpy plus the work done.

This means that the flash calculation will not include
heat entering or leaving the system. l.e. the outlet

Figure 3 - A tablelisting four types of commonly used
flash calculations.

Input inlet conditions (initial process conditions)

The third step is to enter two of the three “inlet
conditions’, the third is computed by the program (Figure
2). In this case at 1000 PSIA and 100°F the sample is
100% in vapor phase.

Enter flash conditions

The fourth step is to enter two of the three flash
conditions. The two conditions which can be selected will

depend upon which flash calculation method was chosen.
In this case the flash conditions selected were 100 PSIA
and 40°F (Figure 2).

Perform the calculations.

The fifth step is to perform the calculations. This is
accomplished by a single key stroke. Within seconds a
wide range of information becomes available.

At a glance, one can determine that the sample in the
origina (inlet) condition is 100% in vapor phase i.e. no
liquid present (Figure 2). The flash condition shows less
than 100% vapor so liquid will condense at the selected
conditions of 100 PSIA and 40°F.

The “stream properties’ table (Figure 4) indicates the
physical properties of the gas mixture at the origina
(inlet) conditions. It also shows that at the flash condition
a small amount of the vapor was condensed. This can be
determined by noting that after “flash” 99.914% of the
original sample was in vapor phase and 0.086% in liquid
phase. The change in the physical properties of the
original gas mixture can be seen by comparison of the
“inlet” and “vapor” columns of data. Worthy of note is
the fact that even though only a small percentage of the
sample condensed a measurable heat value (BTU) change
occurred. The original sample heat value was 1130.65.
After flashing to the new conditions the resulting
condensation caused the heat value to drop down to
1127.63 for a loss of 3.02 BTU.
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Figure4 - A stream propertiestable listing some physical properties of the“inlet” (initial) stream, vapor (vapor phase
after theflash calculation) and liquid (liquid phase if any was formed after the flash calculation was perfor med).



By observing the component mole percents table (Figure (lower volatility) components experienced the greatest
5) it can be seen how the condensation impacted the gas change.
phase composition. Note that the higher molecular weight
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Figure5 - A “component mole percents’ tablelisting the composition of “inlet” stream and vapor and liquid streams
after flash calculation.

Another source of wuseful information available engineer/technician is the Pressure-Temperature phase
immediately after the flash calculation are various diagram (Figure 6).
diagrams. The most useful one for an analyzer
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Figure 6 - Pressure-Temper atur e phase diagram. One of the many diagramswhich can be



The phase relationships of a gas mixture can be
determined at any pressure and temperature condition by
observing the phase diagram. In Figure 7 it can be seen
that at pressure and temperature conditions to the left of
the phase envelope the sample is 100% liquid. To the
right of the phase envelope the sample is 100% in the gas
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phase. The pressure and temperature conditions which
fall inside the phase envelope result in a two phase (gas
and liquid) mixture. Conditions within the envelope to the
extreme right result in the least liquid present. Conditions
within the envelope to the extreme left result in the
maximum amount of liquid.
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Figure 7 - Pressure-Temper atur e phase diagram showing the gag/liquid phaserelationships

The pressure/temperature conditions in the upper region
arein a“supercritical fluid” state. In the supercritical state
the fluid is neither atrue gas nor atrue liquid.

There is a considerable amount of information which can
be derived from a P-T phase diagram. This information is
available from multiple sources in easy to understand
laymen’s language. The reader is encouraged to engage in
further study of this important topic. A few hours spent
studying will save the engineer/technician a considerable
amount of time and expense throughout his’her career.

Practical usesfor EOS software

Isliquid entrained in the sample source?

The composition obtained by anaysis of natura gas
sample is entered (Figure 8). The source gas conditions of
pressure and temperature are also entered as the “inlet
condition”. Performing a caculation at this set of
conditions shows that the sample was 99.914% vapor
(0.086% liquid). It was not necessary to select a flash
calculation type or enter a flash (secondary) condition to
obtain this result. The answer to the original question is
“yes’, there was liquid entrained.
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Figure 8 - A flow chart showing theresults of a specific application.

entered as 100% (Figure 9). After the calculation is

What isthe Dew point temper ature of the sample gas performed the calculated temperature shown under “inlet
at the sour ce conditions of pressure? conditions’ is the dewpoint temperature. In this case, as

in the previous example, it was not necessary to enter the
The composition is entered, the “inlet condition” of Flash  caculation type or Flash  condition.

pressure is entered and the “inlet condition” of vapor is
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Figure9 - A flow chart showing theresults of a specific application.

Will condensation occur in the sample system?

The sample composition and the inlet conditions of
pressure and temperature are entered (Figure 10). The
autarchic flash calculation type is selected and the sample
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system conditions of pressure and temperature are entered
as the flash conditions. After calculation view the %
vapor at the flash condition. If it is 100% then
condensation will not occeur.
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Figure 10 - A flow chart showing theresults of a specific application.

Alternatively by calculating a dew point temperature at
the sample system pressure condition as previousy
discussed one can determine if condensation will occur. If
the sample system temperature is higher than the
calculated dew point temperature condensation will not
occur.

This is an important calculation to perform due to the fact
that the APl 14.1 standard for sampling natural gas
requires the sample to remain at a minimum of 25°F
above the dew point temperature. Calculating the dew
point temperature can therefore be valuable in validating
the sampling process.

The answers to many other questions can be found by
using an EOS software package. Examples are as follows:

e |sheat tracing of the sample system required for
a given ambient temperature condition?

e |f the sample temperature dips below the dew
point temperature by a known amount, what will
be the impact on the sample’'s gas phase
composition, physical properties and heating
(BTU) vaue? How much liquid will condense?

e Will condensation occur during the transition
from the initial process condition to the final
condition in the sample system? If so, to what
degree and how will it impact the sample
composition and its properties.

Summary

EOS software are valuable tools which can provide
answers to many question which arise during the design,
operation and maintenance of sample conditioning
systems for natural gas. Although the equations are
complex, the software is easy to use. A small amount of
time spent in the study of laymen's thermodynamics
would be very beneficial to anyone involved with the
sampling and analysis of natural gas.

Also worthy of note is the fact that the hydrocarbon dew
point temperature of natural gas has taken center stage in
recent times. It is the driving force for many past and
future changes to the standards governing the sampling
and analysis of natural gas.
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